(相关资料图)
JUC同步锁原理源码解析四----SemaphoreSemaphore1.Semaphore的来源A counting semaphore. Conceptually, a semaphore maintains a set of permits. Each {@link #acquire} blocks if necessary until a permit isavailable, and then takes it. Each {@link #release} adds a permit,potentially releasing a blocking acquirer.
一组数量的信号,只有获取到信号的线程才允许执行。通过acquire进行获取,如果获取不到则需要阻塞等待直到一个信号可用。release会释放一个信号量。通过这种方式可以实现限流。
2.Semaphore的底层实现Semaphore的底层实现依旧依赖于AQS的共享锁机制。
2.AQS源码Node节点static final class Node { /** Marker to indicate a node is waiting in shared mode */ static final Node SHARED = new Node(); /** Marker to indicate a node is waiting in exclusive mode */ static final Node EXCLUSIVE = null; /** waitStatus value to indicate thread has cancelled */ static final int CANCELLED = 1; /** waitStatus value to indicate successor"s thread needs unparking */ static final int SIGNAL = -1; /** waitStatus value to indicate thread is waiting on condition */ static final int CONDITION = -2; static final int PROPAGATE = -3; volatile int waitStatus; volatile Node prev; volatile Node next; volatile Thread thread; Node nextWaiter;}
AbstractQueuedSynchronizer类public abstract class AbstractQueuedSynchronizer extends AbstractOwnableSynchronizer implements java.io.Serializable { private transient volatile Node head; /** * Tail of the wait queue, lazily initialized. Modified only via * method enq to add new wait node. */ private transient volatile Node tail; /** * The synchronization state. */ private volatile int state;//最重要的一个变量 }
ConditionObject类public class ConditionObject implements Condition, java.io.Serializable { private static final long serialVersionUID = 1173984872572414699L; /** First node of condition queue. */ private transient Node firstWaiter; /** Last node of condition queue. */ private transient Node lastWaiter;}
accquire方法public final void acquire(int arg) { if (!tryAcquire(arg) &&//尝试获取锁 acquireQueued(addWaiter(Node.EXCLUSIVE), arg))//如果获取锁失败,添加到队列中,由于ReentrantLock是独占锁所以节点必须是EXCLUSIVE类型 selfInterrupt();//添加中断标识位}
addWaiter方法private Node addWaiter(Node mode) { Node node = new Node(Thread.currentThread(), mode);//新建节点 // Try the fast path of enq; backup to full enq on failure Node pred = tail;//获取到尾指针 if (pred != null) {//尾指针不等于空,将当前节点替换为尾指针 node.prev = pred; if (compareAndSetTail(pred, node)) {//采用尾插法,充分利用时间局部性和空间局部性。尾插的节点一般不容易被取消。 pred.next = node; return node; } } enq(node);//cas失败后执行入队操作,继续尝试 return node; }
enq方法private Node enq(final Node node) { for (;;) { Node t = tail;//获取尾指针 if (t == null) { //代表当前队列没有节点 if (compareAndSetHead(new Node()))//将当前节点置为头结点 tail = head; } else {//当前队列有节点 node.prev = t;// if (compareAndSetTail(t, node)) {//将当前节点置为尾结点 t.next = node; return t; } } }}
acquireQueued方法final boolean acquireQueued(final Node node, int arg) { boolean failed = true; try { boolean interrupted = false; for (;;) { final Node p = node.predecessor();//找到当前节点的前驱节点 if (p == head && tryAcquire(arg)) {//前驱节点等于头节点尝试cas抢锁。 setHead(node);//抢锁成功将当前节点设置为头节点 p.next = null; // help GC 当头结点置空 failed = false; return interrupted; } if (shouldParkAfterFailedAcquire(p, node) &&//当队列中有节点在等待,判断是否应该阻塞 parkAndCheckInterrupt())//阻塞等待,检查中断标识位 interrupted = true;//将中断标识位置为true } } finally { if (failed)// cancelAcquire(node);//取消当前节点 }} private void cancelAcquire(Node node) { // Ignore if node doesn"t exist if (node == null)//当前节点为空直接返回 return; node.thread = null;//要取消了将当前节点的线程置为空 // Skip cancelled predecessors Node pred = node.prev;//获取到当前节点的前驱节点 while (pred.waitStatus > 0)//如果当前节点的前驱节点的状态大于0,代表是取消状态,一直找到不是取消状态的节点 node.prev = pred = pred.prev; Node predNext = pred.next;//将当前要取消的节点断链 node.waitStatus = Node.CANCELLED;//将当前节点的等待状态置为CANCELLED // If we are the tail, remove ourselves. if (node == tail && compareAndSetTail(node, pred)) {//如果当前节点是尾结点,将尾结点替换为浅语节点 compareAndSetNext(pred, predNext, null);//将当前节点的下一个节点置为空,因为当前节点是最后一个节点没有next指针 } else { // If successor needs signal, try to set pred"s next-link // so it will get one. Otherwise wake it up to propagate. int ws; if (pred != head &&//前驱节点不等于头结点 ((ws = pred.waitStatus) == Node.SIGNAL ||//前驱节点的状态不等于SIGNAL (ws <= 0 && compareAndSetWaitStatus(pred, ws, Node.SIGNAL))) &&//前驱节点的状态小于0,并且cas将前驱节点的等待置为SIGNAL pred.thread != null) {//前驱节点的线程补位空 Node next = node.next;//获取当前节点的next指针 if (next != null && next.waitStatus <= 0)//如果next指针不等于空并且等待状态小于等于0,标识节点有效 compareAndSetNext(pred, predNext, next);//将前驱节点的next指针指向下一个有效节点 } else { unparkSuccessor(node);//唤醒后续节点 条件:1.前驱节点是头结点 2.当前节点不是signal,在ReentransLock中基本不会出现,在读写锁时就会出现 } node.next = node; // help GC 将引用指向自身 } } private void unparkSuccessor(Node node) { /* * If status is negative (i.e., possibly needing signal) try * to clear in anticipation of signalling. It is OK if this * fails or if status is changed by waiting thread. */ int ws = node.waitStatus;//获取当前节点状态 if (ws < 0)//如果节点为负数也即不是取消节点 compareAndSetWaitStatus(node, ws, 0);//cas将当前节点置为0 /* * Thread to unpark is held in successor, which is normally * just the next node. But if cancelled or apparently null, * traverse backwards from tail to find the actual * non-cancelled successor. */ Node s = node.next;//获取到下一个节点 if (s == null || s.waitStatus > 0) {//下一个节点等于空或者下一个节点是取消节点 s = null;//将s置为空 for (Node t = tail; t != null && t != node; t = t.prev)//从尾结点遍历找到一个不是取消状态的节点 if (t.waitStatus <= 0) s = t; } if (s != null)//如果s不等于空 LockSupport.unpark(s.thread);//唤醒当前节点s }
shouldParkAfterFailedAcquire方法private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) { int ws = pred.waitStatus;//获取上一个节点的等待状态 if (ws == Node.SIGNAL)//如果状态为SIGNAL,代表后续节点有节点可以唤醒,可以安心阻塞去 /* * This node has already set status asking a release * to signal it, so it can safely park. */ return true; if (ws > 0) {//如果当前状态大于0,代表节点为CANCELLED状态 /* * Predecessor was cancelled. Skip over predecessors and * indicate retry. */ do { node.prev = pred = pred.prev;//从尾节点开始遍历,找到下一个状态不是CANCELLED的节点。将取消节点断链移除 } while (pred.waitStatus > 0); pred.next = node; } else { /* * waitStatus must be 0 or PROPAGATE. Indicate that we * need a signal, but don"t park yet. Caller will need to * retry to make sure it cannot acquire before parking. */ //这里需要注意ws>0时,已经找到了一个不是取消状态的前驱节点。 compareAndSetWaitStatus(pred, ws, Node.SIGNAL);//将找到的不是CANCELLED节点的前驱节点,将其等待状态置为SIGNAL } return false;}
cancelAcquire方法private void cancelAcquire(Node node) { // Ignore if node doesn"t exist if (node == null)//当前节点为空直接返回 return; node.thread = null;//要取消了将当前节点的线程置为空 // Skip cancelled predecessors Node pred = node.prev;//获取到当前节点的前驱节点 while (pred.waitStatus > 0)//如果当前节点的前驱节点的状态大于0,代表是取消状态,一直找到不是取消状态的节点 node.prev = pred = pred.prev; Node predNext = pred.next;//将当前要取消的节点断链 node.waitStatus = Node.CANCELLED;//将当前节点的等待状态置为CANCELLED // If we are the tail, remove ourselves. if (node == tail && compareAndSetTail(node, pred)) {//如果当前节点是尾结点,将尾结点替换为浅语节点 compareAndSetNext(pred, predNext, null);//将当前节点的下一个节点置为空,因为当前节点是最后一个节点没有next指针 } else { // If successor needs signal, try to set pred"s next-link // so it will get one. Otherwise wake it up to propagate. int ws; if (pred != head &&//前驱节点不等于头结点 ((ws = pred.waitStatus) == Node.SIGNAL ||//前驱节点的状态不等于SIGNAL (ws <= 0 && compareAndSetWaitStatus(pred, ws, Node.SIGNAL))) &&//前驱节点的状态小于0,并且cas将前驱节点的等待置为SIGNAL pred.thread != null) {//前驱节点的线程补位空 Node next = node.next;//获取当前节点的next指针 if (next != null && next.waitStatus <= 0)//如果next指针不等于空并且等待状态小于等于0,标识节点有效 compareAndSetNext(pred, predNext, next);//将前驱节点的next指针指向下一个有效节点 } else { unparkSuccessor(node);//唤醒后续节点 条件:1.前驱节点是头结点 2.当前节点不是signal,在ReentransLock中基本不会出现,在读写锁时就会出现 } node.next = node; // help GC 将引用指向自身 } }
unparkSuccessor方法private void unparkSuccessor(Node node) { /* * If status is negative (i.e., possibly needing signal) try * to clear in anticipation of signalling. It is OK if this * fails or if status is changed by waiting thread. */ int ws = node.waitStatus;//获取当前节点状态 if (ws < 0)//如果节点为负数也即不是取消节点 compareAndSetWaitStatus(node, ws, 0);//cas将当前节点置为0 /* * Thread to unpark is held in successor, which is normally * just the next node. But if cancelled or apparently null, * traverse backwards from tail to find the actual * non-cancelled successor. */ Node s = node.next;//获取到下一个节点 if (s == null || s.waitStatus > 0) {//下一个节点等于空或者下一个节点是取消节点 s = null;//将s置为空 for (Node t = tail; t != null && t != node; t = t.prev)//从尾结点遍历找到一个不是取消状态的节点 if (t.waitStatus <= 0) s = t; } if (s != null)//如果s不等于空 LockSupport.unpark(s.thread);//唤醒当前节点s }
release方法public final boolean release(int arg) { if (tryRelease(arg)) {//子类实现如何释放锁 Node h = head;//获取到头结点 if (h != null && h.waitStatus != 0)//获取到头结点,如果头结点不为空,等待状态不为0,唤醒后续节点 unparkSuccessor(h); return true; } return false;}private void unparkSuccessor(Node node) { /* * If status is negative (i.e., possibly needing signal) try * to clear in anticipation of signalling. It is OK if this * fails or if status is changed by waiting thread. */ int ws = node.waitStatus;//获取节点的等待状态 if (ws < 0)//如果等待状态小于0,标识节点属于有效节点 compareAndSetWaitStatus(node, ws, 0);//将当前节点的等待状态置为0 /* * Thread to unpark is held in successor, which is normally * just the next node. But if cancelled or apparently null, * traverse backwards from tail to find the actual * non-cancelled successor. */ Node s = node.next;//获取到下一个节点 if (s == null || s.waitStatus > 0) {//如果节点是空,或者是取消状态的节点,就找到一个非取消状态的节点,将取消状态的节点断链后由垃圾回收器进行回收 s = null; for (Node t = tail; t != null && t != node; t = t.prev) if (t.waitStatus <= 0) s = t; } if (s != null)//节点不用空 LockSupport.unpark(s.thread);//唤醒当前等待的有效节点S}
acquireShared方法public final void acquireShared(int arg) { if (tryAcquireShared(arg) < 0)//由子类实现 doAcquireShared(arg);}
doAcquireShared方法private void doAcquireShared(int arg) { final Node node = addWaiter(Node.SHARED);//将共享节点也即读线程入队并返回 boolean failed = true; try { boolean interrupted = false; for (;;) { final Node p = node.predecessor();//找到节点的前驱节点 if (p == head) {//如果前驱节点等于头结点 int r = tryAcquireShared(arg);//尝试获取共享锁数量 if (r >= 0) {//如果锁的数量大于0,表示还有多余的共享锁。这里等于0也需要进一步判断。由于如果当执行到这里时,有另外的线程释放了共享锁,如果不进行判断,将会导致释放锁的线程没办法唤醒其他线程。所以这里会伪唤醒一个节点,唤醒的节点后续如果没有锁释放,依旧阻塞在当前parkAndCheckInterrupt方法中 setHeadAndPropagate(node, r);//将当前节点的等待状态设置为Propagate。 p.next = null; // help GC if (interrupted)//判断是会否中断过 selfInterrupt();//设置中断标识位 failed = false; return; } } if (shouldParkAfterFailedAcquire(p, node) &&//判断是否应该阻塞等待 parkAndCheckInterrupt方法中())//阻塞并检查中断标识 interrupted = true;//重置中断标识位 } } finally { if (failed)//如果失败 cancelAcquire(node);//取消节点 }}
setHeadAndPropagate方法private void setHeadAndPropagate(Node node, int propagate) { Node h = head; // Record old head for check below setHead(node);//将当前节点置为头结点 /* * Try to signal next queued node if: * Propagation was indicated by caller, * or was recorded (as h.waitStatus either before * or after setHead) by a previous operation * (note: this uses sign-check of waitStatus because * PROPAGATE status may transition to SIGNAL.) * and * The next node is waiting in shared mode, * or we don"t know, because it appears null * * The conservatism in both of these checks may cause * unnecessary wake-ups, but only when there are multiple * racing acquires/releases, so most need signals now or soon * anyway. */ if (propagate > 0 //可获取的共享锁也即读锁的数量,对于ReentrantReadWriteLock而言,永远都是1,所以会继续唤醒下一个读线程 || h == null //如果旧的头结点为空 || h.waitStatus < 0 ||//头结点的等待状态不为0 (h = head) == null || h.waitStatus < 0) {//旧头节点不为空并且等待状态小于0也即是有效节点 Node s = node.next;//获取到node的下一个节点 if (s == null || s.isShared())//如果node的下一个节点为空或者是共享节点 doReleaseShared();//唤醒下一个线程 } }
releaseShared方法public final boolean releaseShared(int arg) { if (tryReleaseShared(arg)) {//子类实现释放锁 doReleaseShared();//唤醒后续线程 return true;//释放成功 } return false;//释放是吧}
doReleaseShared方法private void doReleaseShared() { /* * Ensure that a release propagates, even if there are other * in-progress acquires/releases. This proceeds in the usual * way of trying to unparkSuccessor of head if it needs * signal. But if it does not, status is set to PROPAGATE to * ensure that upon release, propagation continues. * Additionally, we must loop in case a new node is added * while we are doing this. Also, unlike other uses of * unparkSuccessor, we need to know if CAS to reset status * fails, if so rechecking. */ for (;;) { Node h = head;//获取到当前头结点 if (h != null && h != tail) {//如果头结点不为空并且不等于尾结点 int ws = h.waitStatus;//获取当前节点的等待状态 if (ws == Node.SIGNAL) {//如果状态为SIGNAL if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))//cas将SIGNAL状态置为0。SIGNAL标识后续有线程需要唤醒 continue; // loop to recheck cases unparkSuccessor(h);//唤醒后续线程 } else if (ws == 0 &&//如果当前状态为0。表示有线程将其置为0 !compareAndSetWaitStatus(h, 0, Node.PROPAGATE))//cas将0状态置为PROPAGATE。在多个共享锁同时释放时,方便继续进行读传播,唤醒后续节点 continue; // loop on failed CAS } if (h == head)//如果头结点没有改变,证明没有必要继续循环等待了,直接退出吧,如果头结点放生变化,可能有其他线程释放了锁。 break; }}
await()public final void await() throws InterruptedException { if (Thread.interrupted())//线程是否发生中断,是,就抛出中断异常 throw new InterruptedException(); Node node = addConditionWaiter();//加入条件等待队列 int savedState = fullyRelease(node);//释放锁,并返回。因为当前线程需要等待 int interruptMode = 0; while (!isOnSyncQueue(node)) {//判断是否在竞争队列中。AQS分为两个队列一个是竞争队列,等待调度执行,一个是等待队列等待在ConditionObject上。 LockSupport.park(this);//阻塞等待 if ((interruptMode = checkInterruptWhileWaiting(node)) != 0) break; } if (acquireQueued(node, savedState) && interruptMode != THROW_IE)//重新去获取锁并判断当前中断模式不是THROW_IE interruptMode = REINTERRUPT;//将中断模式置为REINTERRUPT if (node.nextWaiter != null) // clean up if cancelled如果当前节点的下一个节点不为空 unlinkCancelledWaiters();//清除等待队列中已经取消的节点 if (interruptMode != 0)//如果当前中断模式不等于0 reportInterruptAfterWait(interruptMode);}private void reportInterruptAfterWait(int interruptMode) throws InterruptedException { if (interruptMode == THROW_IE)//如果是THROW_IE直接抛出异常 throw new InterruptedException(); else if (interruptMode == REINTERRUPT)//如果是REINTERRUPT selfInterrupt();//重置中断标识位}
addConditionWaiter方法private Node addConditionWaiter() { Node t = lastWaiter;//获取到最后一个节点 // If lastWaiter is cancelled, clean out. if (t != null && t.waitStatus != Node.CONDITION) {//最后一个节点不等于空,并且等待状态不等于CONDITION unlinkCancelledWaiters();//将取消节点断链,标准的链表操作 t = lastWaiter;//获取到最后一个有效的节点 } Node node = new Node(Thread.currentThread(), Node.CONDITION);//将当前节点封装成node if (t == null)//如果最后一个节点为空,表示当前节点是第一个入队的节点 firstWaiter = node; else t.nextWaiter = node;//否则将当前node挂在链表末尾 lastWaiter = node;//设置最后节点的指针指向当前node return node;}
fullyRelease方法final int fullyRelease(Node node) { boolean failed = true; try { int savedState = getState();//获取当前state状态 if (release(savedState)) {//释放锁尝试 failed = false; return savedState;//返回 } else { throw new IllegalMonitorStateException();//抛出释放锁异常 } } finally { if (failed) node.waitStatus = Node.CANCELLED;//如果失败将节点置为取消状态 }}public final boolean release(int arg) { if (tryRelease(arg)) {//尝试释放锁,在CyclciBarrier中由于线程需要去阻塞,所以需要将锁释放,后续重新拿锁 Node h = head; if (h != null && h.waitStatus != 0)//从头结点开始唤醒 unparkSuccessor(h); return true; } return false;}
isOnSyncQueue方法final boolean isOnSyncQueue(Node node) { if (node.waitStatus == Node.CONDITION || node.prev == null)//如果当前节点是Condition或者node.pre节点为空,标识不在竞争队列中,返回faslse return false; if (node.next != null) // If has successor, it must be on queue 表示在竞争队列中 return true; /* * node.prev can be non-null, but not yet on queue because * the CAS to place it on queue can fail. So we have to * traverse from tail to make sure it actually made it. It * will always be near the tail in calls to this method, and * unless the CAS failed (which is unlikely), it will be * there, so we hardly ever traverse much. */ return findNodeFromTail(node);//从竞争队列的尾结点开始找当前node,找到就返回true,否则为false}private boolean findNodeFromTail(Node node) { Node t = tail;//获取到尾结点 for (;;) { if (t == node) return true; if (t == null) return false; t = t.prev; }}
findNodeFromTail方法private int checkInterruptWhileWaiting(Node node) { return Thread.interrupted() ?//判断当前是否中断过 (transferAfterCancelledWait(node) ? THROW_IE : REINTERRUPT) ://如果移动到竞争队列中并入队成功,返回THROW_IE,否则返回REINTERRUPT 0;//没有中断过直接返回0}//走到这里表示条件队列的条件满足,可以将节点移动到竞争队列中执行final boolean transferAfterCancelledWait(Node node) { if (compareAndSetWaitStatus(node, Node.CONDITION, 0)) {//尝试将当前为Condition的节点置为0,并移动到竞争队列中 enq(node); return true; } /* * If we lost out to a signal(), then we can"t proceed * until it finishes its enq(). Cancelling during an * incomplete transfer is both rare and transient, so just * spin. */ while (!isOnSyncQueue(node))//如果不在竞争队列中返回false Thread.yield(); return false;}
signalAll方法
public final void signalAll() { if (!isHeldExclusively())//是不是持有独占锁 throw new IllegalMonitorStateException(); Node first = firstWaiter;//获取等待队列的第一个节点 if (first != null)//如果节点不为空 doSignalAll(first);//唤醒所有线程}//从头指针一直遍历等待队列,将其移动到竞争队列中private void doSignalAll(Node first) { lastWaiter = firstWaiter = null; do { Node next = first.nextWaiter; first.nextWaiter = null; transferForSignal(first);// first = next; } while (first != null);}
transferForSignal方法final boolean transferForSignal(Node node) { /* * If cannot change waitStatus, the node has been cancelled. */ if (!compareAndSetWaitStatus(node, Node.CONDITION, 0))//cas自旋将其等待状态改为0 return false; /* * Splice onto queue and try to set waitStatus of predecessor to * indicate that thread is (probably) waiting. If cancelled or * attempt to set waitStatus fails, wake up to resync (in which * case the waitStatus can be transiently and harmlessly wrong). */ Node p = enq(node);//将其放入竞争队列 int ws = p.waitStatus;//获取节点的等待状态 if (ws > 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL))//如果节点是取消状态或者cas将其置为signal失败,唤醒当前线程,让他自己处理,后续在竞争队列中会自动移除取消节点 LockSupport.unpark(node.thread); return true;}
总结:AQS提供了统一的模板,对于如何入队出队以及线程的唤醒都由AQS提供默认的实现,只需要子类实现自己上锁和解锁的逻辑。
3.Semaphore基本使用import java.util.concurrent.Semaphore;public class SemaphoreDemo { public static void main(String[] args) { //Semaphore s = new Semaphore(2); Semaphore s = new Semaphore(2, true); //允许一个线程同时执行 //Semaphore s = new Semaphore(1); new Thread(() -> { try { s.acquire(); System.out.println("T1 running..."); } catch (InterruptedException e) { e.printStackTrace(); } finally { s.release(); } }).start(); new Thread(() -> { try { s.acquire(); System.out.println("T2 running..."); s.release(); } catch (InterruptedException e) { e.printStackTrace(); } finally { s.release(); } }).start(); }}
Sync类abstract static class Sync extends AbstractQueuedSynchronizer { private static final long serialVersionUID = 1192457210091910933L; Sync(int permits) { setState(permits);//设置信号量 } final int getPermits() { return getState();//获得信号量 } final int nonfairTryAcquireShared(int acquires) {//非公平锁的抢锁方式 for (;;) { int available = getState();//获取state中的可用信号量 int remaining = available - acquires;//减1 if (remaining < 0 ||//信号量小于0,直接返回 compareAndSetState(available, remaining))//尝试cas抢锁 return remaining;//返回剩余的信号量 } } protected final boolean tryReleaseShared(int releases) { for (;;) { int current = getState();//获取当前state int next = current + releases;//将state+1.也即信号量加1 if (next < current) // overflow 非法条件判断,超过最大数量 throw new Error("Maximum permit count exceeded"); if (compareAndSetState(current, next))//cas尝试释放锁 return true;//释放成功返回 } } //减少信号量 final void reducePermits(int reductions) { for (;;) { int current = getState();//获取当前state int next = current - reductions; if (next > current) // underflow throw new Error("Permit count underflow"); if (compareAndSetState(current, next))//cas尝试减少信号量 return; } } //清空信号数量 final int drainPermits() { for (;;) { int current = getState();//获取当前state状态 if (current == 0 || compareAndSetState(current, 0))//当前信号为0 或者将state置为0也即将信号数量置为0 return current; } }}
FairSync与NonfairSync的类实现//公平锁static final class FairSync extends Sync { private static final long serialVersionUID = 2014338818796000944L; FairSync(int permits) { super(permits); } protected int tryAcquireShared(int acquires) { for (;;) { if (hasQueuedPredecessors())//队列中是否有线程在排队 return -1;//获取失败 int available = getState();//可用的信号量 int remaining = available - acquires;//减去当前获取的数量 if (remaining < 0 ||//可用的信号量小于0 compareAndSetState(available, remaining))//cas设置state变量. return remaining;//返回可用的信号量 } }}//非公平锁static final class NonfairSync extends Sync { private static final long serialVersionUID = -2694183684443567898L; NonfairSync(int permits) { super(permits); } protected int tryAcquireShared(int acquires) { return nonfairTryAcquireShared(acquires);//详情请看父类的实现 }}
acquire方法public void acquire() throws InterruptedException { sync.acquireSharedInterruptibly(1);//请查看父类实现,与acquireShared一致,不过加了一场处理}
release方法:public void release() { sync.releaseShared(1);}public final boolean releaseShared(int arg) { if (tryReleaseShared(arg)) {//Semaphore的类实现锁获取的方法。 doReleaseShared();//与AQS中一致,不过多赘述 return true; } return false;}
4.留言到了这里,其实AQS的源码基本已经覆盖了,对于AQS的源码也应该有了清楚的认知。总结就是:一个volatile 的state变量,两个等待队列(竞争队列,条件队列),通过cas的方式保证单变量的原子性。后续将会对Exchanger以及Phaser进行源码解析,到此基本AQS已经到了一个段落了。后续观看源码时,请注意多考虑一下多线程并发时可能出现的情况,去理解doug lea写代码的思路。
关键词: